Реферат: Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
де - абсциса будь-якої точки в області існування розв’язку, а - поки що невідома функція, яка залежить лише від . Знайдемо похідну , користуючись формулою (12.28):
(12.29)
Враховуючи, що і користуючись умовою (12.26) для заміни підінтегральної функції, з (12.29) отримуємо
.
Отже, або
.
Звідси , або ,
де - довільна стала. Підставляючи знайдену функцію у вираз (12.28), отримаємо
.
Це дозволяє записати загальний розв’язок рівняння (12.25) (або те ж саме рівняння (12.27)) у вигляді:
- довільна стала.
Зауваження. На практиці зручніше продиференціювати
рівність (12.28) за , потім замінити відомою функцією , а далі – визначити та .
Приклад . Розв’язати рівняння
Р о з в ’ я з о к. Позначимо
і переконаємося, що це – рівняння в повних диференціалах. Справді, частинні похідні і рівні між собою:
Отже, умова (12.26) виконується. Для знаходження функції про інтегруємо рівність .
Маємо .
Звідси визначимо похідну: та прирівняємо її до відомої функції :
.
Отже, і, ,
де - довільна стала.
Функцію знайдено:
.
Загальний інтеграл рівняння має вигляд .
Розглянемо питання про можливість зведення рівняння виду (12.25), для якого не виконується умова (12.26), до рівняння в повних диференціалах. Домножимо обидві частини рівняння (12.25) на деяку функцію таку, що рівняння
(12.30)
буде рівнянням у повних диференціалах. Згідно з доведеним для цього необхідно і достатньо, щоб виконувалась рівність, аналогічна рівності (12.26):
,
або
.
Зведемо подібні члени
.
Поділивши обидві частини цього рівняння на та врахувавши, що , отримаємо
(12.31)
Це рівняння в частинних похідних відносно . Розв’язати його – це завдання не простіше, ніж інтегрування вихідного рівняння. Розглянемо два частинні випадки, коли рівняння (12.31) спрощується і його можна розв’язати.
1) Нехай шуканий інтегральний множник залежить лише від : .
Тоді , і рівняння (12.31) набуває вигляду
(12.32)
Якщо права частина цього рівняння не залежить від , то воно легко інтегрується.
2) Якщо інтегральний множник є функцією тільки від : , то , а .
Тоді рівняння (12.31) можна подати таким чином:
(12.33)
Якщо вираз справа залежить лише від , рівняння (12.33) інтегрується.
Приклад 2. Розв’язати рівняння . Зауважимо, що в розглянутому випадку .
Р о з в ’ я з о к. Знайшовши частинні похідні
переконуємося, що умова (12.26) не виконується.
Спробуємо підібрати інтегральний множник виду . Рівняння (12.32) набуває вигляду
.
Вираз у правій частині останньої рівності залежить і від , і від . Отже, інтегрального множника вигляду не існує.
Припустимо, що , і складемо рівняння (12.33):
.
Оскільки вираз у правій частині цієї рівності залежить від , рівняння інтегрується. Знайдемо один з його частинних розв’язків:
, звідки . Перевіримо, чи множник знайдено правильно. Для цього домножимо обидві частини вихідного рівняння на та переконаємося, що коефіцієнти отриманого рівняння задовольнятимуть умові (12.26). Маємо
.
Тоді
і, отже, інтегральний множник було знайдено правильно (оскільки (12.26) – рівняння в повних диференціалах). Знайдемо функцію . Оскільки
то , або
.
Продиференціюємо по та прирівняємо цю похідну до :
.
Отже, і .
Тоді
,
і загальний інтеграл рівняння має вигляд