Реферат: Достатні ознаки збіжності рядів з додатніми членами, ознаки порівняння, Даламбера, радикальна та інтегральна ознаки Коші
Зауваження 1. Ряд (13.4) буде розбігатися і в тому випадку, коли Це випливає з того, що починаючи з деякого номера , буде виконуватися нерівність , або .
Зауваження 2. Якщо , то ознака Даламбера не дає можливості встановити, збігається чи розбігається даний ряд. В одному випадку такий ряд може збігатися, а в іншому – розбігатися. Для вирішення питання про збіжність таких рядів необхідно застосувати іншу ознаку.
Зауваження 3. Якщо , але відношення для всіх номерів , починаючи з деякого, більше за одиницю, то такий ряд розбігається.
Це випливає з того, що при буде виконуватися нерівність , і загальний член не прямує до нуля при
Приклад 1. Дослідити збіжність ряду
.
Р о з в ‘ я з о к. Використаємо ознаку Даламбера : ,
і
, тому ряд розбігається.
Приклад 2. Дослідити збіжність ряду .
Р о з в ‘ я з о к. Використовуючи ознаку Даламбера, одержимо
<1; отже, даний ряд збігається.
13.5. Радикальна ознака Коші
Теорема. Якщо для ряду з додатними членами (13.4) величина
, (13.10)
то:
1) при ряд (13.4) збігається;
2) при ряд (13.4) розбігається;
3) при теорема не дає відповіді на питання про збіжність чи розбіжність ряду.
Д о в е д е н н я. 1) Нехай Розглянемо число , що задовольняє умові Починаючи з , будемо мати
звідки випливає, що
або
Розглянемо тепер два ряди:
,
.
Другий ряд збігається, оскільки його члени утворюють геометричну прогресію. Члени першого ряду, починаючи з , менші за члени другого ряду, а тому він за ознакою порівняння збігається.
2) Нехай Тоді, починаючи з деякого номера , будемо мати
або
Але, якщо всі члени даного ряду, починаючи з деякого , більші за одиницю, то ряд розбігається, оскільки його загальний член не прямує до нуля.
Зауваження. Як і в ознаці Даламбера, випадок вимагає додаткового дослідження. Серед таких рядів можуть зустрітися як збіжні, так і розбіжні.
Приклад. Дослідити збіжність ряду
.
Р о з в ‘ я з о к. Використаємо радикальну ознаку Коші:
>1 – ряд розбігається.
13.6. Інтегральна ознака Коші
Розглянемо ще одну ознаку, яка відрізняється по формі від всіх попередніх.
Нехай ряд має форму
, (13.11)
і є значення при деякої функції , визначеної для . Припустимо, що ця функція неперервна, додатна і монотонно спадна.
Теорема. Нехай члени ряду (13.11) додатні і не спадають, тобто
(13.12)
і нехай така неперервна неспадна функція, що
(13.13)
Тоді :
1) якщо невласний інтеграл збігається, то збігається і ряд (13.11);
2) якщо невласний інтеграл розбігається, то розбігається і ряд (13.11).
Д о в е д е н н я. Зобразимо члени ряду геометрично, відкладаючи на осі абсцис номера членів ряду, а на осі ординат – відповідні значення членів ряду . Побудуємо на цьому ж рисунку графік неперервної функції , що задовольняє умові (13.13). Ясно, що ця функція буде проходити через точки (рис. 13.1).
Рис.13.1 Рис.13.2
Зауважимо, що площа го прямокутника дорівнює , а сума площ побудованих прямокутників дорівнює частинній сумі ряду З іншого боку, ступенева фігура, утворена цими прямокутниками, містить область, що обмежена кривою і прямими ; площа цієї області дорівнює Отже,
(13.14)
На рис.13.2 перший (зліва) із побудованих прямокутників має висоту , а тому його площа буде Площа другого прямокутника і т.д. Площа останнього із побудованих прямокутників буде
Отже, сума площ всіх побудованих прямокутників дорівнює
З іншого боку, як легко помітити, ступенева фігура, утворена цими прямокутниками, міститься всередині криволінійної трапеції, обмеженої кривою і прямими
Площа цієї криволінійної трапеції дорівнює Тому
звідки
. (13.15)
Розглянемо тепер обидва випадки.
1). Нехай невласний інтеграл збігається. Оскільки