Реферат: Сканери

Чорно-білі сканери

Спробуємо пояснити принцип роботи чорно-білого сканера. Сканируемое зображення висвітлюється білим світлом, одержуваним, як правило, від флуоресцентної лампи. Відбите світло через що редукує (уменьшающую) лінзу попадає на фоточуттєвий напівпровідниковий елемент, називаний приладом із зарядовим зв'язком ПЗС (Change- Coupled Device, CCD), в основу якого покладена чутливість провідності p-n-переходу звичайного напівпровідникового діода до ступеня його освітленості. На p-n-переході створюється заряд, що розсмоктується зі швидкістю, що залежить від освітленості. Чим вище швидкість рассасивания, тим більший струм проходить через діод.


Рис.1. Блок схема чорно-білого сканера.

Кожен рядок сканування зображення відповідає визначеним значенням напруги на ПЗС. Ці значення напруги перетворяться в цифрову форму або через аналого-цифровий перетворювач АЦП (для напівтонових сканерів), або через компаратор (для дворівневих сканерів). Компаратор порівнює два значення ( чинапруга струм) від ПЗС і опорне (мал. 1), причому в залежності від результату порівняння на його виході формується сигнал 0 (чорний колір) чи 1 (білий). Розрядність АЦП для напівтонових сканерів залежить від кількості підтримуваних рівнів сірого кольору. Наприклад, сканер, що підтримує 64 рівня сірого, повинний мати 6-розрядний АЦП. Яким образом сканується кожна наступна рядок зображення, цілком залежить від типу використовуваного сканера. Нагадаємо, що в планшетних сканерів рухається скануюча голівка, а в рулонних сканерах вона залишається нерухомої, тому що рухається носій із зображенням — папір.

Кольорові сканери

В даний час існує кілька технологій для одержання кольорових сканируемих зображень. Один з найбільш загальних принципів роботи кольорового сканера полягає в наступному. Сканируемое зображення висвітлюється вже не білим кольором, а через обертовий RGB-світлофільтр (мал. 2). Для кожного з основних квітів (червоного, зеленого і синього) послідовність операцій практично не відрізняється від послідовності дій при скануванні чорно-білого зображення. Виключення складає, мабуть, тільки етап попередньої обробки і гамма-корекції квітів, перед тим як інформація передається в комп'ютер. Зрозуміло, що цей етап є загальним для всіх кольорових сканерів.

У результаті трьох проходів сканування виходить файл, що містить образ зображення в трьох основних квітах — RGB (образ композитного сигналу). Якщо використовується восьмиразрядний АЦП, що підтримує 256 відтінків для одного кольору, то кожній крапці зображення ставиться у відповідність один з 16,7 мільйона можливих квітів (24 розряду). Сканери, що використовують подібний принцип дії, випускаються, наприклад, фірмою Microtek.

 

Рис.2. Блок-схема кольорового сканера з обертовим RGB-фільтром.

Треба відзначити, що найбільш істотним недоліком описаного вище методу є збільшення часу сканування в три рази. Проблему може представляти також «вирівнювання» пікселов при кожнім із трьох проходів, тому що в противному випадку можливе розмивання відтінків і «змазування» квітів.

У сканерах відомих японських фірм Epson і Sharp, як правило, замість одного джерела світла використовується три, для кожного кольору окремо. Це дозволяє сканувати зображення усього за один прохід і виключає невірне «вирівнювання» пікселов. Складності цього методу полягають звичайно в підборі джерел світла зі стабільними характеристиками.

Інша японська фірма — Seiko Instruments — розробила Кольоровий планшетний сканер SpectraPoint, у якому елементи ПЗС були замінені фототранзисторами. На ширині 8,5 дюйма розміщено 10200 фототранзисторів, розташованих у три стовпчики по 3400 у кожній. Три кольорових фільтри (RGB) улаштовані так, що кожен стовпчик фототранзисторів сприймає тільки один основний колір. Висока щільність інтегральних фототранзисторів дозволяє досягати гарної здатності, що дозволяє - 400 dpi (3400/8,5) — без використання лінзи, що редукує.

Принцип дії кольорового сканера ScanJet Iic фірми Hewlett Packard трохи інший. Джерело білого світла висвітлює скановане зображення, а відбите світло через лінзу, що редукує, попадає на трьох смужкову ПЗС через систему спеціальних фільтрів, що і розділяють біле світло на три компоненти: червоний, зелений і синій (мал. 3). Фізика роботи подібних фільтрів зв'язана з явищем дихроизма, що полягає в різному фарбуванні одноосьових кристалів у минаючому білому світлі в залежності від положення оптичної осі. У розглянутому випадку фільтрація здійснюється парою таких фільтрів, кожний з який являє собою «сендвич» із двох тонких і одного більш товстого шару кристалів. Перший шар першого фільтра відбиває синє світло, але пропускає зелений і червоний. Другий шар відбиває зелене світло і пропускає червоний, котрий відбивається тільки від третього шару. В другому фільтрі, навпаки, від першого шару відбивається червоне світло, від другого — зелений, а від третього — синій. Після системи фільтрів розділене червоне, зелене і синє світло попадає на власну смугу ПЗС, кожен елемент якого має розмір близько 8 мкм. Подальша обробка сигналів кольоровості практично не відрізняється від звичайної. Помітимо, що подібний принцип роботи (з деякими відмінностями, розуміється) використовується й у кольорових сканерах фірми Ricoh.

 


Рис.3. Блок-схема сканера з dichroic-фільтрами.

Апаратні інтерфейси сканерів

Для зв'язку з комп'ютером сканери можуть використовувати спеціальну 8- чи 16-розрядну інтерфейсну плату, що вставляється у відповідний слот розширення. Для портативних комп'ютерів підходить пристрій PC Card. Крім того, у даний час достатнє широке поширення одержали стандартні інтерфейси, застосовувані в IBM PC-сумісних комп'ютерах (послідовний і рівнобіжний порти, а також інтерфейс SCSI). Варто відзначити, що у випадку стандартного інтерфейсу в користувача не виникає проблем з поділом системних ресурсів: портів уведення-висновку, переривань IRQ і каналів прямого доступу DMA.

По зрозумілих причинах найбільше повільно передача даних здійснюється через послідовний порт (RS-232C). Саме тому в ряді останніх ручних чи комбінованих моделей сканерів для зв'язку з комп'ютером застосовується стандартний рівнобіжний порт. Це дуже зручно, наприклад, при роботі з портативним комп'ютером.


Програмні інтерфейси і TWAIN

Для керування роботою сканера (утім, як і іншого пристрою) необхідна відповідна програма — драйвер. У цьому випадку керування йде не на рівні "заліза" (портів уведення-висновку), а через чи функції крапки входу драйвера. Донедавна кожен драйвер для сканера мав свій власний інтерфейс. Це було достатнє незручно, оскільки для кожної моделі сканера була потрібна своя прикладна програма. Логічніше було б навпаки, якби з однією прикладною програмою могли працювати кілька моделей сканерів. Це стало можливим завдяки TWAIN.

TWAIN — це стандарт, відповідно до якого здійснюється обмін даними між прикладною програмою і зовнішнім пристроєм (читай — його драйвером). Нагадаємо, що консорціум TWAIN був організований за участю представників компаній Aldus, Caere, Eastman Kodak, Hewlett Packard & Logitech. Основною метою створення TWAIN-специфікації було рішення проблеми сумісності, тобто легкого об'єднання різних пристроїв уведення з будь-яким програмним забезпеченням. Конкретизуючи, можна виділити кілька основних питань: по-перше, підтримку різних платформ комп'ютерів; по-друге, підтримку різних пристроїв, включаючи різноманітні сканери і пристрої уведення відео; по-третє, можливість роботи з різними формату даних. Завдяки використанню TWAIN-інтерфейсу можна вводити зображення одночасне з роботою в прикладній програмі, що підтримує TWAIN, наприклад CorelDraw, Picture Publisher, PhotoFinish. Таким чином, будь-яка TWAIN -сумісна програма буде працювати з TWAIN-сумісним сканером.

На закінчення варто відзначити, що образи зображень у комп'ютері можуть зберігатися в графічних файлах різних форматів, наприклад TIFF, РСХ, ВМР, GIF і інших. Треба мати в через, що при скануванні зображень файли виходять досить громіздкими і можуть досягати десятків і сотень мегабайт. Для зменшення обсягу збереженої інформації використовується звичайно процес компресії (стиску) таких файлів.



  • Сторінка:
  • 1
  • 2
  • 3