Реферат: Як людина пізнає Всесвіт

Помилкове уявлення про незалежність теорії від об'єктивного світу посилюється тією обставиною, що в ряді випадків теоретичні конструкції, незважаючи на свою складність, багатоступінчастість і абстрактний ха­рактер, дають правильні результати, підтверджувані практикою.

З точки зору деяких буржуазних філософів, теорія, якщо тільки вона логічно несуперечлива, є непогріши­мою. І якщо висновки такої теорії при дослідній пере­вірці не збігаються з дійсністю, то причина таких незбі-гів може полягати тільки в погрішностях досліду, але ні в якому разі не у вадах теорії. Логічно несуперечлива теорія не може піддаватися сумніву.

Подібної ідеалістичної точки зору додержуються не тільки філософи-ідеалісти, але й деякі природодослідни­ки на Заході. Так, англійський астроном Е. Мілн заявив, що він вислуховуватиме тільки ті зауваження своїх критиків, що стосуються суто математичного боку його теорії. Така заява стала прямим наслідком філософської позиції Мілна, викладеної ним у книжці «Християнська ідея бога». Дослід повинен зайняти підпорядковане ста­новище, твердив він, і відповідати картині Всесвіту, яку ми можемо вивести чистим розумом.

Інший англійський учений — відомий фізик А. Бддінгтон вважав, що всі закони природи нібито можна вивести без допомоги досліду, виключно шляхом логіч­них міркувань, на основі чистого розуму.

Справді, в ході теоретичних досліджень учені вису­вають ті Чи інші передбачення і припущення. А потім теоретичним шляхом з них виводяться всілякі можливі наслідки. Але справа у тому, що в основі таких вихід­них припущень завжди лежать або вже існуючі, переві­рені на досліді теоретичні уявлення, або конкретні реальні факти. А здобуті висновки в свою чергу за до­помогою спостережень й експериментів зіставляються з існуючим у природі станом речей. Тому було б непра­вильним твердити, що фізики і астрономи «не знають, про що вони говорять».

Будь-які теоретичні побудови тільки тоді мають на­укову цінність, коли вони прямо або посередньо пов'я­зані з реальною дійсністю, відображають об'єктивні властивості навколишнього світу. І про цей зв'язок не можна забувати ніколи.

Все, про що тільки-но говорилося, переконливо пока­зує повну безпідставність звинувачення, яке сучасні релігійні теоретики кидають науці, звинувачення в недостовірності й неповноті наукових знань, що спираєть­ся на мінливість наукових уявлень. Ми переконалися, що ця мінливість насправді відбиває поступальний рух

науки, її дедалі глибше проникнення в сутність — рух од відносних істин до абсолютної.

Практика — критерій істини. З точки зору діалектич­ного матеріалізму вищим критерієм істинних наукових знань є практика, практична діяльність людей у найширшому значенні цього слова. Справедливість і дієвість цього критерію всебічно перевірена всією історією роз­витку науки й людського суспільства; Коли б наука давала нам неправильні, викривлені уявлення про при­роду і її закономірності, людина не могла б здійснити жодного технологічного процесу, не могла б створити жодної машини, не могла б розв'язати жодного завдан­ня, пов'язаного з необхідністю розуміння природних явищ. «Від живого споглядання,— зазначав В. І. Ле­нін,— до абстрактного мислення і від нього до практи­ки — такий є діалектичний шлях пізнання істини, пі­знання об'єктивної реальності» І.

Практика багатоманітна і в різних конкретних умо­вах може виступати в різних формах. Висновки науки можуть перевірятися спостереженнями, експеримента­ми, а також застосуванням цих висновків у виробничих і технологічних процесах, у конструкціях приладів, ме­ханізмів, машин, апаратів та інших технічних пристро­їв і виробів.

Які ж конкретні форми критерію практики є в науці про Всесвіт? Через дистанційний характер астрономіч­них досліджень безпосередня практична перевірка тих чи інших висновків астрономічної теорії дуже утрудне­на, а в більшості випадків і нездійсненна.

Як відомо, астрономічні дослідження охоплюють величезний простір радіусом близько 10—12 млрд. св. років. Між тим донедавна сфера практичного застосу­вання астрономічних знань була обмежена межами Землі. Та й застосування це по суті зводилося до розв'язан­ня ряду завдань навігації і геодезії, а також до вимірю­вання часу. У цій сфері земна практика добре підтвер­дила надійність астрономічних даних, їх використання приводило до бажаних результатів.

Ще однією сферою, де справедливість астрономічних теорій могла бути підтверджена і підтверджувалася спо­стереженнями, була небесна механіка, чи, як її зараз називають, теоретична астрономія. Передбачені небес­ною механікою астрономічні явища — появи періодич­них комет, затемнення Місяця і Сонця, збурення в русі планет і обчислені з урахуванням цих збурень їх май­бутні розміщення на небі — відбувалися саме так і тоді, як це було розраховано.

З розвитком астрофізики в сферу людської практики почали залучатися результати вивчення фізичних про­цесів, що проходять у Всесвіті. Результати ці впрова­джувались у фізичну практику і тим самим проходили ретельну перевірку, а те, що за їх допомогою діставала фізика, з часом виходило в життя і апробувалося вже загальнолюдською практикою.

Так, термоядерна теоретична модель джерела соняч­ної енергії, побудована на основі астрономічних спосте­режень Сонця, яка міцно увійшла в теоретичну фізику, реалізувалася потім у пристроях для здійснення термо­ядерних вибухів, а нині склала теоретичну основу конструювання керованих термоядерних реакторів, що обіцяють у недалекому майбутньому черговий технічний переворот в енергетиці.

Аналогічна історія мала місце з відкриттям четверто­го стану речовини — плазми, яке також пов'язане з до­слідженнями Сонця. Вивчивши цей стан, фізики не тільки розробили теорію плазми, а й дали їй вихід у практику. Газосвітні лампи, плазмові пальники для зварювання, плазмові двигуни для космічних апаратів, плазмові магнітогідродинамічні генератори — ось дале-

ко не повний перелік технічних пристроїв, у яких тео­рія плазмових явищ пройшла практичну перевірку. Плазма працює і в знаменитих «Токамаках» — прообра­зах майбутніх термоядерних реакторів.

Треба зазначити, що паралельно відбувається і зво­ротний процес: запозичені з науки про Всесвіт нові фізичні уявлення й ідеї, пройшовши через «горнило» фізики, знову повертаються в астрономію, допомагаючи глибше зрозуміти природу фізичних явищ, що відбува­ються у космосі.

Нарешті, поява космонавтики і космічної техніки відкрила новий етап у розвитку практичної діяльності людства — етап безпосереднього залучення космічних явищ у сферу людської практики. Вперше в історії зем­ної цивілізації сфера діяльності людей, у тому числі й практичного застосування наукових знань, переросла земні межі і охопила простір Сонячної системи. Тепер наукові уявлення про закономірності різних космічних процесів дістають застосування при конструюванні різ­них космічних апаратів, обчисленнях їх руху, при роз­робці програм наукових досліджень і експерименту на космічних орбітах, а значить, перевіряються критерієм практики безпосередньо у космосі.

Однак і в епоху космічних польотів величезна біль­шість космічних явищ досліджується дистанційними засобами. А якщо врахувати колосальні масштаби тієї сфери, вивченням якої займається астрономія, і реальні можливості проникнення в глибини Всесвіту навіть за допомогою найфантастичніших космічних апаратів май­бутнього — таке становище збережеться надовго.

Та все ж і при вивченні найвіддаленіших космічних об'єктів і регіонів Всесвіту перевірка практикою все одно потрібна. Але чи можлива вона?

Перевірку практикою не слід розуміти буквально в тому значенні, що кожний конкретний результат нау­кових досліджень можна вважати вірогідним тільки

тоді, коли він дістає безпосереднє пряме практичне під­твердження або застосування. Якби справа стояла таким чином, то розвиток знань був би утрудненим. Доводило­ся б перевіряти практично кожний проміжний результат, кожний теоретичний висновок. Такий підхід неминуче уповільнив би процес наукового пізнання світу.

На щастя, у такій постановці справи немає потреби. В науці часто-густо використовується не пряма, а по­середня, опосередкована перевірка тих чи інших резуль­татів чи висновків. Практикою контролюється не кож­ний окремий результат, а метод, за допомогою якого ці результати здобуваються.

Так, наприклад, метод спектрального аналізу (зокре­ма, визначення за його допомогою хімічного складу джерел електромагнітного випромінювання, їхньої тем­ператури, а також вимірювання швидкості їх руху від­носно спостерігача за ефектом Доплера) надійно пере­вірений у земних умовах. Тому з усіма підставами мож­на застосовувати цей метод і до вивчення космічних об'єктів.

Аналогічна ситуація виникає при поширенні на нові області явищ тієї чи іншої наукової теорії, яка досить добре виправдала себе на практиці. Здобутим при цьому результатам ми вправі довіряти, хоча вони й не пройшли ще безпосередньої практичної перевірки.

Прикладом можуть бути спеціальна й загальна теорія відносності, розроблені Ейнштейном. Фундамен­тальні положення цих теорій дістали блискуче практич­не підтвердження. Так, основою атомної енергетики є принцип еквівалентності маси і енергії, що випливав із спеціальної теорії відносності. Дуже багато експери­ментальних установок сучасної фізики, в тому числі прискорювачі елементарних частинок, розраховуються за формулами цієї теорії. Якби вони були неправильни­ми, то такі установки просто не працювали б. Дістала підтвердження в спостереженнях за частинками космічних променів і залежність темпу плину часу від швид­кості руху, передбачена спеціальною теорією віднос­ності.



  • Сторінка:
  • 1
  • 2
  • 3
  • 4
  • 5