Реферат: Аксіоми, інтуїція і домовленість в науковому дослідженні
Зосередивши увагу на спробi конвенцiалiстiв логiстично пояснити роль iнтуїцiї в науковому пiзнаннi можна зробити висновок, що iнструментальнiсть конвенцiй не має волюнтарно-суб'єктивiстського характеру. Iнтуїцiя як джерело конвенiональних угод розглядається у виглядi здатностi створювати системно-аналоговий зв'язок мiж попереднiми (традицiйними) i ново-набутими уявленнями, а не як довiльна гра уявлення суб'єктивного духу.
Це демонструє наведений у другому роздiлi приклад демонстрацiї логiстичностi iнтуїцiї пов'язаний з вправами англiйського математика Л.Керроелла.
Конвенцiоналiзм склався як фiлософiї науки, що визнає довiльнiсть вибору вихiдних понять i аксiом (обмежену лише деякими коммунiкативно-формальними вимогами щодо спiввiдношення помiж членами прийнятої групи положень). Це усувало, на думку прихильникiв цього напрямку, необхiднiсть певного "вибору" мiж матерiалiстичним та iдеалiстичним (взагалi "метафiзичними" - у термiнологiї неопозитивiзму) вирiшенням даного питання.
В науковому вiдношеннi конвенцiоналiсти намагались спертись на такий факт, як можливiсть iснування незалежного ланцюга понять i законiв, що введенi в яку-небудь науку iз-зовнi i необхiднi для неї та незалежнi вiд змiсту самої цiєї науки. В цьому розумiннi математика "запозичує" з логiки деякi закони i правила, що виглядає як привнесення цих законiв i правил у математику суб'єктом. Наприклад, згiдно iдеї Д.Гiльберта, початковi поняття геометрiї можуть бути сконструйованi через формальнi визначення, що їх покладають, i вiд останнiх не вимагається "очевидностi" i вони неначе вносяться iз-зовнi. Що ж стосується самої логiки, то за межi кожної даної логiчної системи виходить питання про вибiр та обгрунтування її аксiом (цi аксiоми можна, з логiчної точки зору, розглядати усерединi даної системи як результат виведення з пустої множини засновкiв).
Безпосередню роль у виникненнi конвенцiоналiзму зiграло вiдкриття неевклiдових геометрiй[Див. наприкл.: 1] , до чого пiзнiше приєдналась побудова рiзноманiтних систем формальної логiки, в тому числi й багатозначних (Лукасевич, Пост, Брауер та iншi). Факт внутрiшньої несуперечливостi рiзних систем формальної логiки i рiзних геометрiй виглядав як доказ їх незалежностi вiд емпiричних моделей, на вiдмiну вiд геометрiї Евклiда, залежнiсть котрої вiд повсякденного досвiду викликала набагато менше сумнiвiв. На користь конвенцiоналiзму використовувався й той факт, що iнодi одну й ту ж теоретичну систему деякої науки можна будувати, виходячи з рiзних наборiв аксiом.
Самi по собi природничонауковi конвенцiї ще не означають конвенцiоналiзму як фiлософського вчення i мають суто науково-методологiчне значення. Конвенцiональнiсть деяких елементiв наукової теорiї, наприклад, форми математичного представлення законiв фiзичних процесiв, в наш час є загальновизнаною i не заперечується нi фiлософами, анi представниками точних наук. Але обгрунтований Пуанкаре природничонауковий конвенцiоналiзм деякими фiлософами (Е.Леруа, А.Бергсон) вiдразу ж був розгорнутий у фiлософський конвенцiоналiзм, котрий заперечував об'єктивний змiст в будь-яких наукових побудовах i в науцi взагалi. Привiд для такої трансформацiї дав сам Пуанкаре, стверджуючи, що вибiр тiєї чи iншої форми теоретичного опису серед низки рiвноправних форм здiйснюється лише на пiдставi "зручностi", "корисностi". А це iнструменталiстське пояснення викликало можливiсть обгрунтування позицiї, коли побудовам науки почали приписувати винятково суб'єктивний характер. Слiд вказати, що у книзi "Останнi думки" Пуанкаре й сам констатував невдалiсть запозиченого ним термiну "зручнiсть".
Засновник методологiї конвенцiоналiзму Жюль Анрi Пуанкаре (1854-1912) - видатний французький математик, фiзик та механiк. Вiн працював вiдразу в багатьох галузях фiзико-математичного знання. Недаремно американський iсторик науки Е.Белл називав його (разом iз Д.Гiльбертом) "останнiм унiверсалiстом". За тридцять з лишнiм рокiв напруженої творчої дiяльностi Пуанкаре залишив величнi працi практично у всiх областях математичної науки. Фундаментальнiсть та розмаїття пошукiв зробили його загальновизнаним лiдером цiєї науки в очах сучасникiв.
Але охоплене Пуанкаре коло проблем не обмежується лише математикою. Такими ж значними, як i в математицi, були його дослiдження у фiзицi. Наприкiнцi ХIХ столiття Пуанкаре критично переосмислив i внiс рiшучi оновлення у математичний апарат "небесної механiки", який складався на протязi двох столiть. На початку розвитку радiотехнiки вiн виступив з теоретичним аналiзом досягнень в цiй областi. А у дванадцятитомному "Курсi математичної фiзики", який вiн написав у наслiдок читання протягом декiлькох рокiв вiдповiдних лекцiй у Сорбоннi, розглядались всi роздiли сучасної йому теоретичної фiзики. Саме в його працях вперше були зформульованi в досить повнiй та виразнiй формi всi основнi положення спецiальної теорiї вiдносностi. Вiн же першим поставив питання про необхiднiсть кардинальної змiни теорiї тяжiння Ньютона у вiдповiдностi до вимог нового принципу вiдносностi i розглянув перший варiант релятивiстської теорiї тяжiння. А в однiй з своїх останнiх праць вiн обгрунтував неминучiсть "нових" квантових уявлень у фiзицi. Тому цiлком справедливо було б стверджувати, що фiгура Пуанкаре уособлює собою той гiгантський злам у поглядах на свiт, який вiдбувся на межi ХIХ-ХХ столiть.
Починаючи з останнього десятилiття ХIХ столiття, Пуанкаре демонстрував свою схильнiсть до глибокого аналiзу загальних проблем розвитку точних наук. Вiн висловлював смiливi судження, якi поєднували в собi широкий погляд на наукове пiзнання з глибоким та вiльним володiнням iдеями та методами конкретних наук. Але необхiдно зауважити, що далеко не всi його оригiнальнi висловлювання з фiлософських проблем в подальшому завоювали таке ж визнання та схвалення, як його досягнення в галузi математики та фiзики. Це зумовлено, зокрема, тiєю непослiдовнiстю, а iнодi - й суперечливiстю, якi Пуанкаре демонстрував у своїх фiлософсько-наукових мiркуваннях.
Для нас найбiльше зацiкавлення становить те коло питань, яке Пуанкаре вiднiс у "фiлософiю науки" в якостi своєрiдної методологiї. Цим питанням вiн присвятив свої працi "Наука i гiпотеза" (1902), "Цiннiсть науки" (1905), "Наука i метод" (1908) i "Останнi думки", яка вийшла пiсля смертi видатного вченого у 1913 роцi.
Як вже зазначалось у попереднiх главах, на початку ХХ столiття гостра полемiка розгорнулась навколо питання: звiдки математика бере свiй основний змiст? Багато вчених, вiдкидаючи гiпотезу Блеза Паскаля про визначальну роль iнтуїцiї i наочних споглядань простих iстин для становлення математики, категорично стверджували, що математичне знання виводиться чисто логiчним шляхом.
Наприкiнцi ХIХ-го та на початку ХХ-го столiття складається вчення логiцизму, яке зводило всю математику до логiки. У цей же перiод складається й математична логiка.
Iталiйський математик Пеано в 5-ти томах свого "Математичного формуляру" дав коментований виклад математики мовою логiчних дiй при допомозi розроблених ним спецiальних позначень. У цьому ж напрямку працювали нiмецькi вченi Фреге i Дедекiнд, британцi Рассел i Уайтхед. З розвитком математичної логiки противники вчення про "iнтуїцiю як основоположення математики" отримали (окрiм наявних доказiв недостовiрностi, посилань на наочнiсть) ще одне могутнє знаряддя, яке, як їм здавалося, дає можливiсть повнiстю i цiлком вилучити з математичного пiзнання iдею "iнтуїцiї".
У 1901 роцi Рассел написав статтю "Найновiшi роботи про початки математики". Трохи пiзнiше виходить знаменита "Principia Mathematica" Рассела i Уайтхеда. Невдовзi французький вчений Кутюра опублiкував декiлька статей, в яких дав всебiчну оцiнку та детальний аналiз досягнень Рассела i Пеано. Всi цi дослiдження й склали теоретичний фундамент логiцизму.
Логiцисти вирiшили повнiстю вилучити з математики iнтуїцiю у всiх її видах. З їх точки зору, багатолiтня заочна суперечка мiж Ляйбнiцем та Кантом, тобто суперечка мiж логiкою та iнтуїцiєї в математицi, завдяки працям Пеано i Рассела є раз i назавжди вирiшеною на користь логiки. В цьому вiдношеннi найкращою iлюстрацiєю слугує такий вислiв Рассела: iнтуїтивнi здiбностi "краще розвинутi у дiтей, анiж у дорослих, у собак їх, мабуть, бiльше, чим коли-небудь було в людей. Але хто в цих фактах побачив би рекомендацiю для iнтуїцiї, повинен був би зробити з них висновок i знову бiгати дикуном в лiсах, яскраво розмальовуватись i харчуватись акридамом i диким медом" [2. -с.12].
Тому не дивно, що логiцисти з погордою вiдкидали саму думку про можливiсть застосування iнтуїцiонiзму в математицi. Вся математика, з їх погляду, може бути виведена з декiлькох понять, що самовизначаються, i речень, що не доводяться; цi поняття i речення закладаються в основу логiки.
У той же час, коли-б здавалося, що поняття "iнтуїцiя" остаточно буде викинутим iз математики, Пуанкаре був фактично єдиним з європейських учених, хто наважився на критику програми логiцизму. Знаходячись практично наодинцi, вiн не лише захистив iнтуїцiю, а ще й передбачив крах логiцизму у час його найбiльшого розквiту, коли, за словами Рассела, "великi трiумфи пробуджували великi надiї".
У питаннi про природу математичного знання i природу математики Пуанкаре виявився втягнутим в тривалу полемiку з британськими та французькими прихильниками логiцизму (Расселом, Уайтхедом, Кутюра).