Реферат: Другий закон термодинаміки та його значення
Зміст
I – Вступ 3-4ст.
II – Основна частина 5-26ст.
Розділ 1.Виникнення термодинаміки(закони термодинаміки)5-12ст.
Розділ 2.Теплові двигуни і холодильники 13-15 ст.
Розділ 3.Ефективність теплових двигунів і другий закон термодинаміки 16-18 ст.
Розділ 4.Двигун Карно 19-20ст.
Розділ 5.Нездійсненна мрія (“Вічний двигун”) 21-26ст.
IІІ – Висновки 27-28ст.
ІV - Список використаних джерел 29ст.
Вступ
Відповідно до першого початку термодинаміки, енергія зберігається. Ми можемо уявити собі багато процесів, у яких енергія зберігається, але в природі такі процеси не спостерігаються. Наприклад, коли гаряче тіло приводиться в контакт із холодним, теплота завжди переходить від гарячого тіла до холодного, а не навпаки. Якби теплота все-таки переходила від холодного тіла до гарячого, то енергія й у цьому випадку зберігалася б, але такий процес у дійсності не має місця. Як другий приклад розглянемо, що відбувається після кидання каменю, що падає на поверхню Землі. В міру падіння каменя його початкова потенціальна енергія переходить у кінетичну. Коли ж камінь стикається з Землею, його кінетична енергія перетворюється у внутрішню енергію каменя і землі (це означає, що молекули цих тіл починають рухатися швидше, а їхня температура повільно збільшиться). Однак чи приходилося вам коли-небудь, спостерігати зворотне явище, у процесі якого спочиваючий на поверхні Землі камінь раптом злетів у повітря завдяки тому, що теплова енергія його (і навколишніх) молекул перетворилося в кінетичну енергію руху каменю як цілого? У цьому процесі енергія зберігалася б, однак у дійсності такого ніколи не відбувається.
Існує багато прикладів і інших процесів, що можуть відбуватися в природі, тоді як зворотні їм ніколи не відбуваються. Наведемо ще два приклади такого роду. Якщо ви насипаєте в кухоль сіль, а потім покриєте його шаром перцю і струснете кухоль, то, напевно, одержите добре перемішану суміш. Однак скільки б ви не трясли кухоль ще, дуже малоймовірно, щоб ця суміш знову розділилася на два шари - окремо сіль і перець. Кавова чашка чи склянка розіб'ються, якщо вони упадуть на підлогу, однак зворотнього процесу не спостерігається.
Якби у всіх вищенаведених прикладах зворотні процеси реалізувалися, це не привело б до порушення першого початку термодинаміки. Для того щоб пояснити відсутність оборотності процесів, вчені в другій половині минулого століття прийшли до формулювання нового закону, відомого за назвою другий початок термодинаміки. Відповідно до цього закону, можна судити про те, які процеси можливі в природі, а які неможливі. Другий початок термодинаміки можна сформулювати багатьма способами, причому усі вони еквівалентні один одному. Одне з формулювань, що належить Р.Ю.Э. Клаузіусу (1822-1888), говорить, що теплота в природних умовах переходить від гарячого тіла до холодного, у той час, як від холодного тіла до гарячого теплота сама по собі не переходить. Оскільки це твердження відноситься до процесу визначеного типу, не цілком очевидно, яким чином застосувати його до інших процесів. Потрібно більш загальне формулювання, у якому явно будуть враховані й інші можливі процеси..
Історично більш загальне формулювання другого початку термодинаміки вироблялося в основному в ході вивчення теплових двигунів (чи, як їх називали раніше – теплових машин). Тепловий двигун - це будь-який пристрій, що перетворить теплову енергію в механічну роботу. Нижче ми перейдемо до вивчення теплових двигунів, що становить інтерес із практичної точки зору і демонструє їхню важливість для загального формулювання другого початку термодинаміки.
Мета цієї роботи – вивчення законів термодинаміки, що дає змогу пояснити хибність уявлення про “вічний двигун”.
В роботі досліджується виникнення термодинаміки як необхідність розробки теоретичних основ теплових машин та значення другого закону термодинаміки, який пояснює неможливість перетворення теплової енергії в механічну.
Розділ 1
Виникнення термодинаміки
Теплові явища відрізняються від механічних і електромагнітних тим, що закони теплових явищ необоротні (тобто теплові процеси самі йдуть лише в одному напрямку) і що теплові процеси здійснюються лише в макроскопічних масштабах, а тому використовувані для опису теплових процесів поняття і розміри (температура, кількість теплоти і т.д.) також мають тільки макроскопічний зміст (про температуру, наприклад, можна говорити стосовно до макроскопічного тіла, але не до молекули або атому). Водночас знання будови речовини необхідно для розуміння законів теплових явищ.
Тіло, аналізоване з термодинамічної позиції, є нерухомим, що не володіє механічною енергією. Але таке тіло має внутрішню енергію, що складається з енергій електронів, що рухаються, і т.д. Ця внутрішня енергія може збільшуватися або зменшуватися. Передача енергії може здійснюватися шляхом передачі від одного тіла до іншого під час виконання над ними роботи і шляхом теплообміну. В другому випадку внутрішня енергія переходить від більш нагрітого тіла до менше нагрітого без виконання роботи. Передану енергію називають кількістю теплоти, а передачу енергії - теплопередачею. У загальному випадку обидва процеси можуть здійснюватися одночасно, коли тіло втрачаючи внутрішню енергію може здійснювати роботу і передавати теплоту іншому тілу. До розуміння цього вчені прийшли не відразу. У XVIII і першій половині XIX ст. було характерно розуміти теплоту як невагому рідину (речовину).
Уявлення про теплоту як форми руху дрібних часток матерії з'явилося ще в XVII столітті. Цих поглядів притримувалися Бекон, Декарт, Ньютон, Гук, Ломоносов. Проте й у XIX столітті концепція теплороду розглядалася багатьма вченими. Наприкінці XVIII століття Б.Томпсон (граф Румфорд) виявив виділення великої кількості тепла під час висвердлюванні каналу в гарматному стовбурі, що вважав доказом того, що теплота є формою прямування. Одержання теплоти за допомогою тертя підтвердили досліди Г.Деві. Б.Томпсон показав, що з обмеженої кількості матерії може бути отримана необмежена кількість теплоти.
Виникнення власне термодинаміки починається з роботи С.Карно (сам термін "термодинаміка" введений Б.Томпсоном). Досліджуючи практичну задачу одержання прямування з тепла стосовно до парових машин, він зрозумів, що принцип одержання прямування з тепла необхідно розглядати не тільки стосовно парових машин, але до будь-яких уявних теплових машин. Так був сформульований загальний метод розв’язку задачі - термодинамічний, що заклав основу термодинаміки. Визначаючи коефіцієнт корисної дії теплових машин, Карно увів свій знаменитий цикл, що складається з двох ізотермічних (які відбуваються при постійній температурі) і двох адіабатичних (без припливу і віддачі тепла) процесів. ККД циклу Карно не залежить від властивостей робочого тіла (пари, газу і т.д.) і визначається температурами тепловіддатчика і теплоприймача. ККД будь-якої теплової машини не може бути при тих же температурах тепловіддатчика і теплоприймача вище ККД циклу Карно.
Карно першим розкрив зв'язок теплоти з роботою. Але він виходив із концепції теплороду, що визнавала теплість незмінної по кількості субстанцією. Водночас Карно вже зрозумів, що робота парової машини визначається загальним законом переходу тепла від більш високих до більш низьких температур, тобто що не може бути безмежного відтворення рушійної сили без витрат теплороду. Таким чином, робота рекомендувалася як результат перепаду теплороду з вищого рівня на нижчі. Інакше кажучи, теплота може створювати роботу лише при наявності різниці температур. За своїм змістом це і складає основу другого початку термодинаміки. ККД теплової машини виявився залежним не від робочої речовини, а від температури тепловіддатчика і теплоприймача. Все це дозволило Карно прийти до визнання принципу неможливості створення вічного двигуна першого роду (тобто постійно працюючої машини, що, будучи якось запущеною, виконувала б роботу без притоку енергії ззовні).
Усвідомлюючи хибність теорії теплороду, Карно зрештою відмовляється від визнання теплоти незмінної по кількості субстанцією і дає значення механічного еквівалента теплоти. Але публікація цього висновку була здійснена вже після винайдення закону збереження енергії, тому даний висновок не мав того значення, яке б мав. будучи опублікованим раніше. Але так чи інакше Карно заклав основи термодинаміки як поділу фізики, що вивчає найбільше загальні властивості макроскопічних систем, що знаходяться в стані термодинамічної рівноваги, і процеси переходу між цими станами. Термодинаміка стала розвиватися на основі фундаментальних принципів або початків, що є узагальненням результатів численних спостережень і експериментів.
б) Перший початок термодинаміки (закон збереження енергії в застосуванні до термодинамічних процесів) говорить про те, що надання термодинамічній системі (наприклад, пари в тепловій машині) визначеної кількості теплоти в загальному випадку відбувається під час збільшенні внутрішньої енергії системи і вона здійснює роботу проти зовнішніх сил. Вище відзначалося, що першим, хто поставив теплоту у зв'язок із роботою, був Карно, але його робота в силу спізнілої публікації не зробила вирішального впливу на формування першого початку термодинаміки. Ідея про те, що теплота - не субстанція, а сила (енергія), однієї з форм якої і є теплота, причому ця сила, у залежності від умов, виступає у виді руху, електрики, світла, магнетизму, теплота, що можуть перетворюватися один в одного, існувала в розумах дослідників. Для перетворення цієї ідеї в ясне і точне поняття, необхідно було визначити загальну міру цієї сили. це зробили, незалежно один від одного, Р.Майер, Д.Джоуль і Г.Гельмгольц.