Реферат: Дослідження стійкості в системі популяційної динаміки із запізненням
3. Система імунного захисту
Наша подальша мета – отримати достатні умови стійкості в явному вигляді для наступної нелінійної системи:
(3.1)
Тут . З цією метою введемо такі позначення. Нехай – довільні додатні константи.
Нехай:
Теорема 3.1. Нехай існують додатні константи , що задовольняють нерівності:
Тоді тривіальний розв’язок (22 ) є асимптотично стійким.
Доведення. Використаємо квадратичний функціонал вигляду:
що є додатньо-означеним на розв’язках системи (22). Обчислимо повну похідну функціоналу , використовуючи систему (22). Маємо:
Зробимо перетворення в усіх складових порядку, відмінного від двох. Тут береться до уваги додатність траєкторії системи. Маємо:
Ми отримали нерівність, де в правій частині є квадратична форма, що відповідає вектору:
Маємо:
.
Тут:
.
Взявши до уваги вигляд матриці , стає зрозумілим, що від’ємна визначеність є еквівалентною виконанню нерівностей, згаданих у формулюванні теореми.
Література
Нисевич Н.И., Марчук Г.И. Математическое моделирование вирусного гепатита. – М.: Наука, 1981.
Hale J. Theory of Functional-Differential Equations. Springer. – Berlin, 1977.
Bellman R., Jacques J., Kalaba R. Some mathematical aspects of chemoterapy. I: one-organ models // Bull. Math. Biophys. – 1960. – Р. 181-198.
Marzeniuk V.P. On Construction of Exponential Estimates for Linear Systems with Delay. – Advances in Difference Equations. – Gordon and Breach Science Publishers. – 1997. – Р.439-445.
Хусаинов Д.Я., Марценюк В.П. Оптимизационный метод исследования устойчивости линейных систем с запаздыванием // Кибернетика и системный аналіз. – 1996. – №4. – С. 88-93.
Хусаинов Д.Я., Марценюк В.П. Двусторонние оценки решений линейных систем с запаздыванием // Доклады НАН Украины.– 1996. – №8. – С. 8-13.
Volterra V. Sur la theorie mathmatique des phenomenes hereditaires. J. Math. Pures Appl. – 7 (1928). – Р. 249-298.
Красовский Н.Н. Некоторые задачи теории устойчивости движения. – М.: Физматгиз, 1959.
Малкин И.Г. Теория устойчивости движения. – М.: Наука, 1951.
Эльсгольц Л.Э., Норкин С.Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. – М.: Наука, 1971.
Колмановский В.Б., Носов В.Р. Устойчивость и периодические режимы регулируемых систем с постедействием. – М.: Наука, 1981. – 448 с.