Сделать стартовой страницейДобавить в избранноеНаш e-mail
Добавить сайт : Редактировать


Интернет: Каталог сайтов, Рефераты, Рецепты, Мода, красота, стиль, товары, услуги, отдых
Игры On-line: Puzzle , Кроссворды , О, счастливчик!
Компьютеры: Обои на рабочий стол
Развлечения: Анекдоты, Фотоприколы, Поздравления, Фотомодели, Сонник, Гороскоп совместимости , Знакомства
Интернет-магазины: Женское белье, купальники, парфюмерия, косметика, мужское белье, одежда
Женское белье и одежда   Купальники 2018

 
Реферат Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
    Теми рефератів --> Математика [89] --> Реферат: Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)
Реферат: Диференціальні рівняння першого порядку (з відокремлюваними змінними, однорідні, лінійні, Бернуллі)

    Сторінка - 3/5

(12.17)

Підставимо (12.17) у рівняння (12.14):

,

або

З останнього рівняння знаходимо :

, (12.18)

де - довільна стала. Отже враховуючи (12.18), загальний розв’язок (12.17) рівняння (12.14) набуває вигляду

(12.19)

Зауваження. Метод варіації довільної сталої для рівняння (12.14) можна реалізувати на практиці таким чином.

Розв’язок рівняння (12.14) шукаємо у вигляді добутку двох невідомих функцій :

(12.20)

Знайдемо похідну

(12.21)

У результаті підстановки функції (12.20) та похідної від неї (12.21) у рівняння (12.14) отримаємо

або

(12.22)

Оскільки функцію можна підібрати довільно (а тоді визначити на основі рівняння (12.14), будемо шукати з рівняння

(12.23)

(при цьому перший доданок зліва у (12.22) перетвориться на нуль). Зауважимо, що це не що інше, як лінійне рівняння (12.15) відносно , розв’язок якого

.

Оскільки нас цікавить лише один який-небудь ненульовий розв’язок рівняння (12.23), то в цій формулі покладемо . Тоді . При цьому рівняння (12.22) спрощується й набуває вигляду , або .

Це - диференціальне рівняння з відокремлюваними змінними. Звідси

.

Отже, згідно з (12.21) загальний розв’язок рівняння (12.14)

, (12.19а)

де - довільна стала.

Отже, розв’язки (12.19) та цього рівняння збіглися. Зауважимо, що при встановленні типу диференціального рівняння та його розв’язання слід врахувати, що не обов’язково шукається залежність виду ; можна спробувати знайти . Наприклад, диференціальне рівняння

можна подати у вигляді

звідки видно, що воно є лінійним, якщо вважати функцією, а - аргументом. Це ж саме рівняння можна записати й так:

Отже, якщо вважати функцією, а - аргументом, то дістаємо лінійне рівняння.

Розглянемо деякі приклади розв’язання лінійних диференціальних рівнянь першого порядку.

Приклад 1. Розв’язати лінійне рівняння :

а) методом варіації довільної сталої;

б) підстановкою .

Р о з в ‘ я з о к. а) Згідно з методом варіації довільної сталої спочатку розв’яжемо відповідне рівняння без правої частини:

.

Маємо , звідки або . Варіюючи сталу , .

Підставимо та як функції від у вихідне рівняння:

.

Звідси і, отже, , де - довільна стала.

Таким чином, загальний розв’язок має вигляд

.

б) Цей же самий результат отримаємо, застосувавши до початкового рівняння підстановку :

або .

Знайдемо з рівняння . Відокремимо змінні: , звідки . Запишемо рівняння відносно , звідси . Отже загальний розв’язок (довільна стала ) збігається як слід було чекати, із розв’язком, знайденим раніше.

Приклад 2. При відстоюванні суспензії має місце повільне осідання твердих частинок під дією сили ваги , якщо опір середовища пропорційний швидкості осідання частинок, що осідають в рідині без початкової швидкості.

Р о з в ’ я з о к. Згідно з законом Ньютона, де маса частинки; швидкість її руху; час; сила дії на частинку. Враховуючи умову задачі, маємо , де вага частинки; сила опору; коефіцієнт пропорційності. Отже, відносно швидкості руху дістаємо рівняння

,

або , причому .

Це лінійне диференціальне рівняння першого порядку. Щоб знайти його частинний розв’язок, що задовольняє початковій умові , спочатку відшукаємо загальний розв’язок рівняння. Використаємо метод варіації довільної сталої. Відповідне однорідне рівняння має вигляд

.

Після відокремлювання змінних та інтегрування отримаємо

, звідки .

Щоб знайти загальний розв’язок рівняння з правою частиною, вважаємо, що в останній рівності .

Тоді ,

і відносно одержується, згідно з умовою, таке рівняння:

,або .

Звідси ,

де довільна стала. Інтегруючи, маємо


    Сторінки - 1 2 3 4 5
Інформація
Всього 4648 рефератів в 65 розділах



bigmir)net TOP 100